Exercise 4.7#

The Pauli matrices are given by

(1)#\[\begin{split} X = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},Y = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix} \end{split}\]

Then we could check

(2)#\[\begin{split} XYX = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} 0 & i\\ -i & 0 \end{pmatrix} = -Y \end{split}\]

The rotation operator about the \(\hat{y}\) axis is given by

(3)#\[\begin{split} R_y(\theta) = \cos\frac{\theta}{2}\ I - i\sin\frac{\theta}{2}Y = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \end{split}\]

Then we could check

(4)#\[\begin{split} \begin{align} XR_y(\theta)X &= \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} \\ &= \begin{pmatrix} \sin\frac{\theta}{2} & \cos\frac{\theta}{2}\\ \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2}\\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \end{align} \end{split}\]

Also, for \(R_y(-\theta)\) we have

(5)#\[\begin{split} R_y(-\theta) = \begin{pmatrix} \cos\frac{-\theta}{2} & -\sin\frac{-\theta}{2} \\ \sin\frac{-\theta}{2} & \cos\frac{-\theta}{2} \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \end{split}\]

According to eq. (4) and eq. (5), we have

(6)#\[ XR_y(\theta)X = R_y(-\theta) \]

A relative simple way to prove \(XR_y(\theta)X = R_y(-\theta)\) is to use the relation \(XYX=-X\)​ directly. That is

(7)#\[\begin{split} \begin{align} XR_y(\theta)X &= X\left(\cos\frac{\theta}{2} I-i\sin\frac{\theta}{2} Y\right)\\ &= \cos\frac{\theta}{2} XIX - i\sin\frac{\theta}{2} XYX \\ &= \cos\frac{\theta}{2} I + i\sin\frac{\theta}{2}Y \\ &= \cos\frac{\theta}{2} I - i\sin\left(\frac{-\theta}{2}\right)Y = R_y(-\theta) \end{align} \end{split}\]