Exercise 2.34#

To calculate the square root and logarithm of the given matrix

(1)#\[\begin{split} A = \begin{pmatrix} 4 &3 \\ 3 &4 \end{pmatrix} \end{split}\]

we need to firstly calculate its eigenvalues as follow,

(2)#\[\begin{split} |A - \lambda I| = \begin{vmatrix} 4-\lambda & 3 \\ 3 & 4-\lambda \end{vmatrix} = (4-\lambda)^2 - 9 = 0 \iff \lambda_{1}=7, \lambda_2 = 1 \end{split}\]

The corresponding normalized eigenvectors are given by

(3)#\[ \begin{align}\begin{aligned}\begin{split} A|v_1\rangle = \begin{pmatrix} 4 &3 \\ 3 &4 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = 7\begin{pmatrix} a \\ b \end{pmatrix} \iff |v_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}\\\end{split}\\\begin{split}A|v_2\rangle = \begin{pmatrix} 4 &3 \\ 3 &4 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix} \iff |v_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{split}\end{aligned}\end{align} \]

where the coefficient \(1/\sqrt{2}\) makes sure the eigenvector is unit vector. Note that the reason we need to normalized the eigenvector is that we need to use the spectral decomposition of matrix \(A\) as a starting point to calculate the function of \(A\). We can also verify that the normalized eigenvectors give a spectral decomposition of \(A\),

(4)#\[\begin{split} \begin{align} A = \sum_{i} \lambda_{i}|i\rangle\langle i| =& 7\cdot\frac{1}{2}\begin{pmatrix}1 \\ 1\end{pmatrix}\begin{pmatrix}1&1\end{pmatrix} + \frac{1}{2}\begin{pmatrix}1 \\ -1\end{pmatrix}\begin{pmatrix}1&-1\end{pmatrix} \\ =& \frac{7}{2}\begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} 1 & -1\\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3\\ 3 & 4 \end{pmatrix} \end{align} \end{split}\]

Then we could calculate the square root of \(A\),

(5)#\[\begin{split} \begin{align} \sqrt{A} = \sum_{i} \sqrt{\lambda_{i}}|i\rangle\langle i| &= \sqrt{7}\cdot\frac{1}{2}\begin{pmatrix}1 \\ 1\end{pmatrix}\begin{pmatrix}1&1\end{pmatrix} + \frac{1}{2}\begin{pmatrix}1 \\ -1\end{pmatrix}\begin{pmatrix}1&-1\end{pmatrix} \\ &=\frac{1}{2}\begin{pmatrix} \sqrt{7} + 1 & \sqrt{7} - 1 \\ \sqrt{7} - 1 & \sqrt{7} + 1 \end{pmatrix} \end{align} \end{split}\]

We can also compute the logarithm of \(A\),

(6)#\[\begin{split} \begin{align} \log{A} = \sum_{i} \log{\lambda_{i}}|i\rangle\langle i| &= \log{7}\cdot\frac{1}{2}\begin{pmatrix}1 \\ 1\end{pmatrix}\begin{pmatrix}1&1\end{pmatrix} + \log 1\cdot\frac{1}{2}\begin{pmatrix}1 \\ -1\end{pmatrix}\begin{pmatrix}1&-1\end{pmatrix} \\ &=\frac{\log 7}{2}\begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix} \end{align} \end{split}\]