Exercise 2.2
Suppose \(V\) is a vector space with basis vector \(|v_1\rangle = |0\rangle\) and \(|v_2\rangle = |1\rangle \), and \(A: V\to V\) is a linear operator. Since we have \(A|0\rangle = |1\rangle\) and \(A|1\rangle = |0\rangle\), according to eq. (2.12) in the book, we could find the matrix entries from
(1)\[\begin{split}
\begin{align}
A|v_1\rangle &= A|0\rangle = A_{11}|0\rangle + A_{21}|1\rangle = |1\rangle \\
A|v_2\rangle &= A|1\rangle = A_{12}|0\rangle + A_{22}|1\rangle = |0\rangle
\end{align}
\end{split}\]
From eq. (1) we could conclude that
(2)\[\begin{split}
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\end{split}\]
Suppose we have a different basis of \(V\) with
(3)\[
|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}
\]
To check whether they are basis, we could do
(4)\[\begin{split}
\begin{align}
\langle +|+\rangle &= \frac{\langle 0 | + \langle 1|}{\sqrt{2}}\cdot\frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{\langle 0 |0\rangle + \langle 1|1\rangle}{2} = 1 \\
\langle +|-\rangle &= \frac{\langle 0 | + \langle 1|}{\sqrt{2}}\cdot\frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{\langle 0 |0\rangle - \langle 1|1\rangle}{2} = 0 \\
\langle -|+\rangle &= \frac{\langle 0 | - \langle 1|}{\sqrt{2}}\cdot\frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{\langle 0 |0\rangle - \langle 1|1\rangle}{2} = 0 \\
\end{align}
\end{split}\]
Then we could conclude from eq. (4) that the basis defined in eq. (3) is a valid orthonormal basis. Under the basis of eq. (3), basis vectors \(|0\rangle\) and \(|1\rangle\) becomes
(5)\[
|0\rangle = \frac{|+\rangle+|-\rangle}{\sqrt{2}}, |1\rangle = \frac{|+\rangle-|-\rangle}{\sqrt{2}}
\]
From eq. (5), eq. (3) becomes
(6)\[\begin{split}
\begin{align}
A|0\rangle = A\left(\frac{|+\rangle + |-\rangle }{\sqrt{2}}\right) = \frac{A|+\rangle + A|-\rangle }{\sqrt{2}} = |1\rangle = \frac{|+\rangle-|-\rangle}{\sqrt{2}}\\
A|1\rangle = A\left(\frac{|+\rangle - |-\rangle }{\sqrt{2}}\right) = \frac{A|+\rangle - A|-\rangle }{\sqrt{2}} = |0\rangle = \frac{|+\rangle+|-\rangle}{\sqrt{2}} \\
\end{align}
\end{split}\]
From eq. (6) we could find that
(7)\[
A|+\rangle = |+\rangle, A|-\rangle = -|-\rangle
\]
Using similar method with eq. (1), we obtain
(8)\[\begin{split}
\begin{align}
A|v_1\rangle = A|+\rangle = A_{11}|+\rangle + A_{21}|-\rangle = |+\rangle\\
A|v_2\rangle = A|-\rangle = A_{12}|+\rangle + A_{22}|-\rangle = -|-\rangle\\
\end{align}
\end{split}\]
Thus, the matrix representation of \(A\) in basis \(|+\rangle\) and \(|-\rangle\) becomes
(9)\[\begin{split}
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & -1 \\
\end{pmatrix}
\end{split}\]
Then under basis \(|+\rangle\) and \(|-\rangle\), the matrix representation of \(A\) is different.