Exercise 2.9#

Suppose \(V\) is a vector space with basis vector \(|v_1\rangle = |0\rangle\) and \(|v_2\rangle = |1\rangle \), and Pauli operators are linear operator \(V\to V\). From eq. (2.25) in the book, we could conclude that the outer product representation for a linear operator \(A:V\to V\) is given by

(1)#\[ A = \sum_{i,j}\langle v_j |A|v_i\rangle |v_j\rangle\langle v_i| \]

where \(|v_i\rangle\) is the \(i-\)th basis for vector space \(V\) and \(\langle v_j|A|v_i\rangle\) is the matrix element \(A_{ji}\) of \(A\). According to eq. (1)​, for Pauli matrices \(\sigma_0,\sigma_1,\sigma_2,\sigma_3\) shown below,

(2)#\[\begin{split} \sigma_0 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_1 = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{split}\]

we have their corresponding outer product representation as

(3)#\[\begin{split} \begin{align} \sigma_0 = I &= I_{11} |v_1\rangle\langle v_1| + I_{12} |v_1\rangle\langle v_2|+I_{21} |v_2\rangle\langle v_1|+I_{22} |v_2\rangle\langle v_2| \\ &= |v_1\rangle\langle v_1| + |v_2\rangle\langle v_2| \\ &= |0\rangle\langle 0| + |1\rangle\langle 1| \\ \end{align} \end{split}\]
(4)#\[\begin{split} \begin{align} \sigma_1 = X &= X_{11} |v_1\rangle\langle v_1| + X_{12} |v_1\rangle\langle v_2|+X_{21} |v_2\rangle\langle v_1|+X_{22} |v_2\rangle\langle v_2| \\ &= |v_1\rangle\langle v_2| + |v_2\rangle\langle v_1| \\ &= |0\rangle\langle 1| + |1\rangle\langle 0| \\ \end{align} \end{split}\]
(5)#\[\begin{split} \begin{align} \sigma_2 = Y &= Y_{11} |v_1\rangle\langle v_1| + Y_{12} |v_1\rangle\langle v_2|+Y_{21} |v_2\rangle\langle v_1|+Y_{22} |v_2\rangle\langle v_2| \\ &= -i|v_1\rangle\langle v_2| + i|v_2\rangle\langle v_1| \\ &= -i|0\rangle\langle 1| + i|1\rangle\langle 0| \\ \end{align} \end{split}\]
(6)#\[\begin{split} \begin{align} \sigma_3 = Z &= Z_{11} |v_1\rangle\langle v_1| + Z_{12} |v_1\rangle\langle v_2|+Z_{21} |v_2\rangle\langle v_1|+Z_{22} |v_2\rangle\langle v_2| \\ &= |v_1\rangle\langle v_1| - |v_2\rangle\langle v_2| \\ &= |0\rangle\langle 0| - |1\rangle\langle 1| \\ \end{align} \end{split}\]