Exercise 2.35#

Suppose that \(\vec{v}\) is a 3-dimensional unit vector, \(\theta\) is real number, and we can use Taylor expansion to calculate \(\exp (i\theta \vec{v}\cdot\vec{\sigma})\). The Taylor expansion of \(e^{A}\) is given by

(1)#\[ e^{A} = \sum_{n=0}^{\infty}\frac{A^n}{n!} = I + A + \frac{A^2}{2!} + \dotsc \]

where \(A\) is a operator. Meanwhile, the Taylor expansion of \(\sin A\) and \(\cos A\) are given by

(2)#\[\begin{split} \begin{align} \sin A &= \sum^{\infty}_{n=0}\frac{(-1)^{n}}{(2n+1)!}A^{2n+1} = A - \frac{A^3}{3!} + \frac{A^5}{5!} - \dotsc\\ \cos A &= \sum^{\infty}_{n=0}\frac{(-1)^{n}}{(2n)!}A^{2n} = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \dotsc \end{align} \end{split}\]

According to eq. (1), the Taylor expansion for \(\exp (i\theta \vec{v}\cdot\vec{\sigma})\) is given by

(3)#\[\begin{split} \begin{align} \exp (i\theta \vec{v}\cdot\vec{\sigma}) =& \sum_{n=0}^{\infty}\frac{(i\theta \vec{v}\cdot\vec{\sigma})^n}{n!} = I + i\theta \vec{v}\cdot\vec{\sigma}+\frac{i^2\theta^2(\vec{v}\cdot\vec{\sigma})^2}{2!} \\ &+ \frac{i^3\theta^3(\vec{v}\cdot\vec{\sigma})^3}{3!} + \frac{i^4\theta^4(\vec{v}\cdot\vec{\sigma})^4}{4!} + \dotsc \\ =& \sum_{n=0}^{\infty}\frac{(i\theta \vec{v}\cdot\vec{\sigma})^n}{n!} = I + i\theta \vec{v}\cdot\vec{\sigma}-\frac{\theta^2(\vec{v}\cdot\vec{\sigma})^2}{2!} \\ &- \frac{i\theta^3(\vec{v}\cdot\vec{\sigma})^3}{3!} + \frac{\theta^4(\vec{v}\cdot\vec{\sigma})^4}{4!} + \dotsc \end{align} \end{split}\]

From eq. (3) we can find that,

  • If \(n\)​ is even number we have

    (4)#\[ n\text{ is even: }I -\frac{A^2}{2!} + \frac{A^4}{4!} - \frac{A^6}{6!} + \frac{A^8}{8!} - \frac{A^{10}}{10!}\dotsc \]

    where \(A = \theta(\vec{v}\cdot\vec{\sigma})\)

  • If \(n\) is odd number we have

    (5)#\[ n\text{ is odd: }iA -\frac{iA^3}{3!} + \frac{iA^5}{5!} - \frac{iA^7}{7!} + \frac{iA^9}{9!} - \frac{iA^{11}}{11!}\dotsc \]

    where \(A = \theta(\vec{v}\cdot\vec{\sigma})\).

According to eq. (2), eq. (4) and eq. (5), we could rewrite eq. (3) as

(6)#\[ \exp (i\theta \vec{v}\cdot\vec{\sigma}) = \cos {[\theta(\vec{v}\cdot\vec{\sigma})]} + i(\vec{v}\cdot\vec{\sigma}) \sin {[\theta(\vec{v}\cdot\vec{\sigma})]} \]

We could simplify eq. (6) by following properties of \(\vec{v}\cdot\vec{\sigma}\). Note that for \(\vec{v}\cdot\vec{\sigma}\), we have

(7)#\[\begin{split} \begin{align} \vec{v}\cdot\vec{\sigma} &= v_{x}\sigma_x + v_y\sigma_y + v_z\sigma_z \\ &= \begin{pmatrix} 0 & v_x\\ v_x &0 \end{pmatrix} + i\begin{pmatrix} 0 & -v_y\\ v_y &0 \end{pmatrix}+ \begin{pmatrix} v_z & 0\\ 0 &-v_z \end{pmatrix} \\ &= \begin{pmatrix} v_z & v_x-iv_y\\ v_x+iv_y &-v_z \end{pmatrix} \end{align} \end{split}\]

So for \((\vec{v}\cdot\vec{\sigma})^2\), we have

(8)#\[\begin{split} \begin{align} (\vec{v}\cdot\vec{\sigma})^2 &= \begin{pmatrix} v_z & v_x-iv_y\\ v_x+iv_y &-v_z \end{pmatrix}\begin{pmatrix} v_z & v_x-iv_y\\ v_x+iv_y &-v_z \end{pmatrix} \\ &= \begin{pmatrix} v^2_z+(v_x-iv_y)(v_x+iv_y) & v_z(v_x-iv_y)-v_z(v_x-iv_y)\\ v_z(v_x+iv_y)-v_z(v_x+iv_y) & (v_x-iv_y)(v_x+iv_y) + v^2_z \end{pmatrix} \\ &= \begin{pmatrix} v^2_z+v^2_x+v^2_y & 0\\ 0 & v^2_x+v^2_y + v^2_z \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I \end{align} \end{split}\]

where we use \(v^2_x+v^2_y+v^2_z = 1\) since \(\vec{v}\) is a unit vector. From eq. (7) and eq. (8), we can re-write eq. (4) and eq. (5)​ as

(9)#\[\begin{split} \begin{align} n\text{ is even: }& I -I\frac{\theta^2}{2!} + I\frac{\theta^4}{4!} - I\frac{\theta^6}{6!} + I\frac{\theta^8}{8!} - I\frac{\theta^{10}}{10!}\dotsc \\ n\text{ is odd: }&i\theta(\vec{v}\cdot\vec{\sigma}) -(\vec{v}\cdot\vec{\sigma})\frac{i\theta^3}{3!} + (\vec{v}\cdot\vec{\sigma})\frac{i\theta^5}{5!} - (\vec{v}\cdot\vec{\sigma})\frac{i\theta^7}{7!} +\dotsc \end{align} \end{split}\]

According to eq. (2) and eq. (9), we could re-write eq. (6) as

(10)#\[ \exp (i\theta \vec{v}\cdot\vec{\sigma}) = I\cos {\theta} + i(\vec{v}\cdot\vec{\sigma}) \sin {\theta} \]