Exercise 10.2#
Consider two eigenstates of \(X\) operator,
(1)#\[
|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}
\]
We can write the corresponding projector as
(2)#\[\begin{split}
\begin{align}
P_{+} &= |+\rangle\langle +| =\frac{1}{2}(|0\rangle\langle 0| + |0\rangle\langle 1|+|1\rangle\langle 0|+|1\rangle\langle 1| ) \\
P_{-} &= |-\rangle\langle -| =\frac{1}{2}(|0\rangle\langle 0| - |0\rangle\langle 1|-|1\rangle\langle 0|+|1\rangle\langle 1| ) \\
\end{align}
\end{split}\]
Notice that \(P_{+} = P^{\dagger}_{+}\) and \(P_{-} = P^{\dagger}_{-}\). We can compute \( P_+ \rho P_+\) as
(3)#\[\begin{split}
\begin{align}
pP_+ \rho P_+ =& \frac{1}{4}p(|0\rangle\langle 0| + |0\rangle\langle 1|+|1\rangle\langle 0|+|1\rangle\langle 1| )\rho \\
&\cdot(|0\rangle\langle 0| + |0\rangle\langle 1|+|1\rangle\langle 0|+|1\rangle\langle 1| ) \\
=& \frac{1}{4}p(|0\rangle\langle 0|\rho|0\rangle\langle 0| + |0\rangle\langle 0|\rho|0\rangle\langle 1|+|0\rangle\langle 0|\rho|1\rangle\langle 0|+|0\rangle\langle 0|\rho|1\rangle\langle 1| ) \\
&+\frac{1}{4}p(|0\rangle\langle 1|\rho|0\rangle\langle 0| + |0\rangle\langle 1|\rho|0\rangle\langle 1|+|0\rangle\langle 1|\rho|1\rangle\langle 0|+|0\rangle\langle 1|\rho|1\rangle\langle 1| ) \\
&+\frac{1}{4}p(|1\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 0|\rho|0\rangle\langle 1|+|1\rangle\langle 0|\rho|1\rangle\langle 0|+|1\rangle\langle 0|\rho|1\rangle\langle 1| ) \\
&+\frac{1}{4}p(|1\rangle\langle 1|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|0\rangle\langle 1|+|1\rangle\langle 1|\rho|1\rangle\langle 0|+|1\rangle\langle 1|\rho|1\rangle\langle 1| ) \\
\end{align}
\end{split}\]
Also, we can compute \( P_- \rho P_-\) as
(4)#\[\begin{split}
\begin{align}
pP_- \rho P_- =& \frac{1}{4}p(|0\rangle\langle 0| - |0\rangle\langle 1|-|1\rangle\langle 0|+|1\rangle\langle 1| )\rho \\
&\cdot(|0\rangle\langle 0| - |0\rangle\langle 1|-|1\rangle\langle 0|+|1\rangle\langle 1| ) \\
=& \frac{1}{4}p(|0\rangle\langle 0|\rho|0\rangle\langle 0| - |0\rangle\langle 0|\rho|0\rangle\langle 1|-|0\rangle\langle 0|\rho|1\rangle\langle 0|+|0\rangle\langle 0|\rho|1\rangle\langle 1| ) \\
&+\frac{1}{4}p(-|0\rangle\langle 1|\rho|0\rangle\langle 0| + |0\rangle\langle 1|\rho|0\rangle\langle 1|+|0\rangle\langle 1|\rho|1\rangle\langle 0|-|0\rangle\langle 1|\rho|1\rangle\langle 1| ) \\
&+\frac{1}{4}p(-|1\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 0|\rho|0\rangle\langle 1|+|1\rangle\langle 0|\rho|1\rangle\langle 0|-|1\rangle\langle 0|\rho|1\rangle\langle 1| ) \\
&+\frac{1}{4}p(|1\rangle\langle 1|\rho|0\rangle\langle 0| - |1\rangle\langle 1|\rho|0\rangle\langle 1|-|1\rangle\langle 1|\rho|1\rangle\langle 0|+|1\rangle\langle 1|\rho|1\rangle\langle 1| ) \\
\end{align}
\end{split}\]
Combine eq. (3) and eq. (4), we have
(5)#\[\begin{split}
\begin{align}
pP_+ \rho P_+ + pP_- \rho P_- =& \frac{1}{2}p(|0\rangle\langle 0|\rho|0\rangle\langle 0| +|0\rangle\langle 0|\rho|1\rangle\langle 1| ) +\frac{1}{2}p( |0\rangle\langle 1|\rho|0\rangle\langle 1|+|0\rangle\langle 1|\rho|1\rangle\langle 0|) \\
&+\frac{1}{2}p(|1\rangle\langle 0|\rho|0\rangle\langle 1|+|1\rangle\langle 0|\rho|1\rangle\langle 0|) +\frac{1}{2}p(|1\rangle\langle 1|\rho|0\rangle\langle 0|+|1\rangle\langle 1|\rho|1\rangle\langle 1| ) \\
=& \frac{1}{2}p(|0\rangle\langle 0|+|1\rangle\langle 1| )\rho(|0\rangle\langle 0| +|1\rangle\langle 1|) +\frac{1}{2}p(|0\rangle\langle 1|+|1\rangle\langle 0|)\rho(|0\rangle\langle 1|+|1\rangle\langle 0|) \\
=& \frac{1}{2}p I\rho I + \frac{1}{2}p X\rho X = \frac{1}{2}p \rho + \frac{1}{2}p X\rho X
\end{align}
\end{split}\]
From eq. (5), we could find that
(6)#\[
2pP_+ \rho P_+ + 2pP_- \rho P_- = p\rho + pX\rho X \iff pX\rho X = 2pP_+ \rho P_+ + 2pP_- \rho P_- - p\rho
\]
With above equation, we could re-write the bit flip channel as
(7)#\[\begin{split}
\begin{align}
\mathcal{E}(\rho) &= (1-p)\rho + pX\rho X \\
&= (1-p)\rho+2pP_+ \rho P_+ + 2pP_- \rho P_- - p\rho \\
&= (1-2p)\rho+2pP_+ \rho P_+ + 2pP_- \rho P_-
\end{align}
\end{split}\]