Exercise 4.13#

The Hadmard gate, Pauli \(X, Y\) and \(Z\) gate are defined as

(1)#\[\begin{split} H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \,X = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},\,Y = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix},\, Z = \begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix} \end{split}\]

Thus, we have

(2)#\[\begin{split} \begin{align} HXH &=\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \frac{1}{2}\begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\\ &= \frac{1}{2}\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = Z \end{align} \end{split}\]

and

(3)#\[\begin{split} \begin{align} HYH &=\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \frac{1}{2}\begin{pmatrix} i & -i\\ -i & -i \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\\ &= \frac{1}{2}\begin{pmatrix} 0 & 2i \\ -2i & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} = -Y \end{align} \end{split}\]

Also

(4)#\[\begin{split} \begin{align} HZH &=\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \frac{1}{2}\begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\\ &= \frac{1}{2}\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X \end{align} \end{split}\]