Exercise 2.11#

The Pauli matrices are given by

(1)#\[\begin{split} X = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},Y = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix},Z = \begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix} \end{split}\]

The eigenvectors, eigenvalues and diagonal representation of Pauli matrices are shown below.

  • For \(X\)​, the eigenvalue \(\lambda\) is the solution of the following equation,

    (2)#\[\begin{split} |X - \lambda I|= \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 1 = 0 \iff \lambda = \pm 1 \end{split}\]

    The corresponding normalized eigenvectors are given by

    (3)#\[\begin{split} \begin{align} X|v_1\rangle &= \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff |v_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ X|v_2\rangle &= \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = -\begin{pmatrix} c \\ d \end{pmatrix} \iff |v_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{align} \end{split}\]

    The coefficient \(1/\sqrt{2}\) is to normalized the eigenvector. Usually, we define \(|+\rangle = |v_1\rangle \) and \(|-\rangle = |v_2\rangle\). From the eigenvalues and eigenvectors, we could write the diagonal representation for \(X\)​ as

    (4)#\[ X = |v_1\rangle\langle v_1| - |v_2\rangle\langle v_2| = |+\rangle\langle +| - |-\rangle\langle -| \]
  • For \(Y\)​, the eigenvalue \(\lambda\)​ is the solution of the following equation,

    (5)#\[\begin{split} |Y - \lambda I|= \begin{vmatrix} -\lambda & -i \\ i & -\lambda \end{vmatrix} = \lambda^2 - 1 = 0 \iff \lambda = \pm 1 \end{split}\]

    The corresponding normalized eigenvectors are given by

    (6)#\[\begin{split} \begin{align} Y|w_1\rangle &= \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff |w_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ i \end{pmatrix} \\ Y|w_2\rangle &= \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = -\begin{pmatrix} c \\ d \end{pmatrix} \iff |w_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix} \end{align} \end{split}\]

    The coefficient \(1/\sqrt{2}\) is to normalized the eigenvector. From the eigenvalues and eigenvectors, we could write the diagonal representation for \(Y\) as

    (7)#\[ Y = |w_1\rangle\langle w_1| - |w_2\rangle\langle w_2| \]
  • For \(Z\)​, the eigenvalue \(\lambda\)​ is the solution of the following equation,

    (8)#\[\begin{split} |Z - \lambda I|= \begin{vmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{vmatrix} = \lambda^2 - 1 = 0 \iff \lambda = \pm 1 \end{split}\]

    The corresponding normalized eigenvectors are given by

    (9)#\[\begin{split} \begin{align} Z|u_1\rangle &= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff |u_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle \\ Z|u_2\rangle &= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = -\begin{pmatrix} c \\ d \end{pmatrix} \iff |u_2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle \end{align} \end{split}\]

    From the eigenvalues and eigenvectors, we could write the diagonal representation for \(Z\)​ as

    (10)#\[ Z = |0\rangle\langle 0| - |1\rangle\langle 1| \]