Exercise 10.5#

Consider the 9-qubits Shor’s code with codeword as

(1)#\[\begin{split} \begin{align} |0_L\rangle = \frac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ |1_L\rangle = \frac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \\ \end{align} \end{split}\]

We can encode an arbitrary state in the form \(|\psi\rangle = a|0_L\rangle + b|1_L\rangle\).

No error occur#

If there is no phase flip error occur, we have an arbitrary state as \(|\psi\rangle = a|{0}_L\rangle + b|{1}_L\rangle\). Since \(X|0\rangle = |1\rangle\) and \(X|1\rangle = |0\rangle\) we have

(2)#\[\begin{split} \begin{align} &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle + |000\rangle)(|111\rangle + |000\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} = |{0}_L\rangle\\ &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle - |111\rangle)(|000\rangle - |1111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle - |000\rangle)(|111\rangle - |000\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} = |{1}_L\rangle\\ \end{align} \end{split}\]

Then measuring \(X_1X_2X_3X_4X_5X_6\) for \(|\psi\rangle = a|{0}_L\rangle + b|{1}_L\rangle\), the outcome is \(+1\), and the probability of getting \(_1\) is

(3)#\[\begin{split} \begin{align} p(m_{123456}=-1) &= \langle \psi|(X_1X_2X_3X_4X_5X_6)^{\dagger}X_1X_2X_3X_4X_5X_6|\psi\rangle\\ &= (a^*\langle {0}_L|+b^*\langle {1}_L|)(a| {0}_L\rangle+b| {1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(4)#\[ \frac{X_1X_2X_3X_4X_5X_6|\psi\rangle}{p(m_{123456}=-1)} = a|{0}_L\rangle+b|{1}_L\rangle \]

After measuring \(X_1X_2X_3X_4X_5X_6\) we perform the measurement \(X_4X_5X_6X_7X_8X_9\), and we have

(5)#\[ \begin{align}\begin{aligned}\begin{split} X_4X_5X_6X_7X_8X_9|{0}_L\rangle = \frac{(|000\rangle + |111\rangle)(|111\rangle + |000\rangle)(|111\rangle + |000\rangle)}{2\sqrt{2}} = |{0}_L\rangle\\\end{split}\\X_4X_5X_6X_7X_8X_9|{1}_L\rangle = \frac{(|000\rangle - |111\rangle)(|111\rangle - |000\rangle)(|111\rangle - |000\rangle)}{2\sqrt{2}} = |{1}_L\rangle \end{aligned}\end{align} \]

Then measuring \(X_4X_5X_6X_7X_8X_9\) for \(|\psi\rangle = a|{0}_L\rangle + b|{1}_L\rangle\), the outcome is \(+1\), and the probability of getting \(+1\) is

(6)#\[\begin{split} \begin{align} p(m_{456789}=+1) &= \langle \psi|(X_4X_5X_6X_7X_8X_9)^{\dagger}X_4X_5X_6X_7X_8X_9|\psi\rangle\\ &= (a^*\langle {0}_L|+b^*\langle {1}_L|)(a| {0}_L\rangle+b| {1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(7)#\[ \frac{X_4X_5X_6X_7X_8X_9|\psi\rangle}{p(m_{456789}=+1)} = a|{0}_L\rangle+b|{1}_L\rangle \]

Phase flip at first three qubits set#

If there is a phase flip error in the first three qubit, the state \(|0_L\rangle\) and \(|1_L\rangle\) becomes

(8)#\[\begin{split} \begin{align} |0_L\rangle \to |\tilde{0}_L\rangle = \frac{(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ |1_L\rangle \to |\tilde{1}_L\rangle = \frac{(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \\ \end{align} \end{split}\]

and the arbitrary state becomes \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\). Since \(X|0\rangle = |1\rangle\) and \(X|1\rangle = |0\rangle\) we have

(9)#\[\begin{split} \begin{align} &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle - |000\rangle)(|111\rangle + |000\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} = -|\tilde{0}_L\rangle\\ &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle + |111\rangle)(|000\rangle - |1111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle + |000\rangle)(|111\rangle - |000\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} = -|\tilde{1}_L\rangle\\ \end{align} \end{split}\]

Then measuring \(X_1X_2X_3X_4X_5X_6\) for \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\), the outcome is \(-1\), and the probability of getting \(-1\) is

(10)#\[\begin{split} \begin{align} p(m_{123456}=-1) &= \langle \psi|(X_1X_2X_3X_4X_5X_6)^{\dagger}X_1X_2X_3X_4X_5X_6|\psi\rangle\\ &= (a^*\langle \tilde{0}_L|+b^*\langle \tilde{1}_L|)(a| \tilde{0}_L\rangle+b| \tilde{1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(11)#\[ \frac{X_1X_2X_3X_4X_5X_6|\psi\rangle}{p(m_{123456}=-1)} = -a|\tilde{0}_L\rangle-b|\tilde{1}_L\rangle \]

After measuring \(X_1X_2X_3X_4X_5X_6\) we perform the measurement \(X_4X_5X_6X_7X_8X_9\), and we have

(12)#\[ \begin{align}\begin{aligned}\begin{split} X_4X_5X_6X_7X_8X_9|\tilde{0}_L\rangle = \frac{(|000\rangle - |111\rangle)(|111\rangle + |000\rangle)(|111\rangle + |000\rangle)}{2\sqrt{2}} = |\tilde{0}_L\rangle\\\end{split}\\X_4X_5X_6X_7X_8X_9|\tilde{1}_L\rangle = \frac{(|000\rangle + |111\rangle)(|111\rangle - |000\rangle)(|111\rangle - |000\rangle)}{2\sqrt{2}} = |\tilde{1}_L\rangle \end{aligned}\end{align} \]

Then measuring \(X_4X_5X_6X_7X_8X_9\) for \(|\psi\rangle = -a|\tilde{0}_L\rangle - b|\tilde{1}_L\rangle\), the outcome is \(+1\), and the probability of getting \(+1\) is

(13)#\[\begin{split} \begin{align} p(m_{456789}=+1) &= \langle \psi|(X_4X_5X_6X_7X_8X_9)^{\dagger}X_4X_5X_6X_7X_8X_9|\psi\rangle\\ &= (-a^*\langle \tilde{0}_L|-b^*\langle \tilde{1}_L|)(-a| \tilde{0}_L\rangle-b| \tilde{1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(14)#\[ \frac{X_4X_5X_6X_7X_8X_9|\psi\rangle}{p(m_{456789}=+1)} = -a|\tilde{0}_L\rangle-b|\tilde{1}_L\rangle \]

Phase flip at second three qubits set#

If there is a phase flip error in the second three qubit, the state \(|0_L\rangle\) and \(|1_L\rangle\) becomes

(15)#\[\begin{split} \begin{align} |0_L\rangle \to |\tilde{0}_L\rangle = \frac{(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ |1_L\rangle \to |\tilde{1}_L\rangle = \frac{(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \\ \end{align} \end{split}\]

and the arbitrary state becomes \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\). Since \(X|0\rangle = |1\rangle\) and \(X|1\rangle = |0\rangle\) we have

(16)#\[\begin{split} \begin{align} &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle + |000\rangle)(|111\rangle - |000\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} = -|\tilde{0}_L\rangle\\ &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle - |000\rangle)(|111\rangle + |000\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} = -|\tilde{1}_L\rangle\\ \end{align} \end{split}\]

Then measuring \(X_1X_2X_3X_4X_5X_6\) for \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\), the outcome is \(-1\), and the probability of getting \(-1\) is

(17)#\[\begin{split} \begin{align} p(m_{123456}=-1) &= \langle \psi|(X_1X_2X_3X_4X_5X_6)^{\dagger}X_1X_2X_3X_4X_5X_6|\psi\rangle\\ &= (a^*\langle \tilde{0}_L|+b^*\langle \tilde{1}_L|)(a| \tilde{0}_L\rangle+b| \tilde{1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(18)#\[ \frac{X_1X_2X_3X_4X_5X_6|\psi\rangle}{p(m_{123456}=-1)} = -a|\tilde{0}_L\rangle-b|\tilde{1}_L\rangle \]

After measuring \(X_1X_2X_3X_4X_5X_6\) we perform the measurement \(X_4X_5X_6X_7X_8X_9\), and we have

\[ \begin{align}\begin{aligned}\begin{split} X_4X_5X_6X_7X_8X_9|\tilde{0}_L\rangle = \frac{(|000\rangle + |111\rangle)(|111\rangle - |000\rangle)(|111\rangle + |000\rangle)}{2\sqrt{2}} = -|\tilde{0}_L\rangle\\\end{split}\\X_4X_5X_6X_7X_8X_9|\tilde{1}_L\rangle = \frac{(|000\rangle - |111\rangle)(|111\rangle + |000\rangle)(|111\rangle - |000\rangle)}{2\sqrt{2}} = -|\tilde{1}_L\rangle \end{aligned}\end{align} \]

Then measuring \(X_4X_5X_6X_7X_8X_9\) for \(|\psi\rangle = -a|\tilde{0}_L\rangle - b|\tilde{1}_L\rangle\), the outcome is \(-1\), and the probability of getting \(-1\) is

(19)#\[\begin{split} \begin{align} p(m_{456789}=-1) &= \langle \psi|(X_4X_5X_6X_7X_8X_9)^{\dagger}X_4X_5X_6X_7X_8X_9|\psi\rangle\\ &= (-a^*\langle \tilde{0}_L|-b^*\langle \tilde{1}_L|)(-a| \tilde{0}_L\rangle-b| \tilde{1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(20)#\[ \frac{X_4X_5X_6X_7X_8X_9|\psi\rangle}{p(m_{456789}=-1)} = a|\tilde{0}_L\rangle+b|\tilde{1}_L\rangle \]

Phase flip at third three qubit set#

If there is a phase flip error in the second three qubit, the state \(|0_L\rangle\) and \(|1_L\rangle\) becomes

(21)#\[\begin{split} \begin{align} |0_L\rangle \to |\tilde{0}_L\rangle = \frac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \\ |1_L\rangle \to |\tilde{1}_L\rangle = \frac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ \end{align} \end{split}\]

and the arbitrary state becomes \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\). Since \(X|0\rangle = |1\rangle\) and \(X|1\rangle = |0\rangle\) we have

(22)#\[\begin{split} \begin{align} &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle + |000\rangle)(|111\rangle + |000\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} = |\tilde{0}_L\rangle\\ &\frac{X_1X_2X_3X_4X_5X_6(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle +|111\rangle)}{2\sqrt{2}}\\ =& \frac{(|111\rangle - |000\rangle)(|111\rangle - |000\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} = |\tilde{1}_L\rangle\\ \end{align} \end{split}\]

Then measuring \(X_1X_2X_3X_4X_5X_6\) for \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\), the outcome is \(+1\), and the probability of getting \(+1\) is

(23)#\[\begin{split} \begin{align} p(m_{123456}=+1) &= \langle \psi|(X_1X_2X_3X_4X_5X_6)^{\dagger}X_1X_2X_3X_4X_5X_6|\psi\rangle\\ &= (a^*\langle \tilde{0}_L|+b^*\langle \tilde{1}_L|)(a| \tilde{0}_L\rangle+b| \tilde{1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(24)#\[ \frac{X_1X_2X_3X_4X_5X_6|\psi\rangle}{p(m_{123456}=+1)} = a|\tilde{0}_L\rangle+b|\tilde{1}_L\rangle \]

After measuring \(X_1X_2X_3X_4X_5X_6\) we perform the measurement \(X_4X_5X_6X_7X_8X_9\), and we have

(25)#\[ \begin{align}\begin{aligned}\begin{split} X_4X_5X_6X_7X_8X_9|\tilde{0}_L\rangle = \frac{(|000\rangle + |111\rangle)(|111\rangle + |000\rangle)(|111\rangle - |000\rangle)}{2\sqrt{2}} = -|\tilde{0}_L\rangle\\\end{split}\\X_4X_5X_6X_7X_8X_9|\tilde{1}_L\rangle = \frac{(|000\rangle - |111\rangle)(|111\rangle - |000\rangle)(|111\rangle + |000\rangle)}{2\sqrt{2}} = -|\tilde{1}_L\rangle \end{aligned}\end{align} \]

Then measuring \(X_4X_5X_6X_7X_8X_9\) for \(|\psi\rangle = a|\tilde{0}_L\rangle + b|\tilde{1}_L\rangle\), the outcome is \(-1\), and the probability of getting \(-1\) is

(26)#\[\begin{split} \begin{align} p(m_{456789}=-1) &= \langle \psi|(X_4X_5X_6X_7X_8X_9)^{\dagger}X_4X_5X_6X_7X_8X_9|\psi\rangle\\ &= (a^*\langle \tilde{0}_L|+b^*\langle \tilde{1}_L|)(a| \tilde{0}_L\rangle+b| \tilde{1}_L\rangle) = 1 \end{align} \end{split}\]

The post-measurement state is then

(27)#\[ \frac{X_4X_5X_6X_7X_8X_9|\psi\rangle}{p(m_{456789}=-1)} = -a|\tilde{0}_L\rangle-b|\tilde{1}_L\rangle \]

From above calculation we know that,

  • If there is no error, we measure \(+1\) for \(X_1X_2X_3X_4X_5X_6\) and \(+1\) for \(X_4X_5X_6X_7X_8X_9\)

  • If there is a phase flip error at the first three qubit set, we measure \(-1\) for \(X_1X_2X_3X_4X_5X_6\) and \(+1\) for \(X_4X_5X_6X_7X_8X_9\)

  • If there is a phase flip error at the second three qubit set, we measure \(-1\) for \(X_1X_2X_3X_4X_5X_6\) and \(-1\) for \(X_4X_5X_6X_7X_8X_9\)

  • If there is a phase flip error at the third three qubit set, we measure \(+1\) for \(X_1X_2X_3X_4X_5X_6\) and \(-1\) for \(X_4X_5X_6X_7X_8X_9\)

From above summary, we can easily see that, the syndrome measurement for detecting phase flip errors in the Shor code corresponds to measuring \(X_1X_2X_3X_4X_5X_6\) and \(X_4X_5X_6X_7X_8X_9\)