# Exercise 6.1 According to the main text, a phase shift operator adds phase $-1$ on computational basis state $|x\rangle$ only when $x = x_0$, that is $$ |x\rangle \to (-1)^{\delta_{x_0}}|x\rangle = \begin{cases} -|x\rangle & x \neq x_0\\ |x\rangle & x = x_0 \end{cases} $$(eqn:6.1.1) Consider operator $U = 2|x_0\rangle\langle x_0| - I$. When performing $U$ on arbitrary computational basis state $|x\rangle$, $$ U|x\rangle = 2|x_0\rangle\langle x_0|x\rangle - |x\rangle = \begin{cases} -|x\rangle & x \neq x_0\\ |x\rangle & x = x_0 \end{cases} $$(eqn:6.1.2) Also, operator $U$ is unitary since $$ \begin{split} U =& (2|x_0\rangle\langle x_0| - I )^{\dagger}(2|x_0\rangle\langle x_0| - I ) \\ =& 4|x_0\rangle\langle x_0| - 2|x_0\rangle\langle x_0| - 2|0\rangle\langle 0| + I = I \end{split} $$(eqn:6.1.3) Therefore, unitary operator $U$ corresponds to the phase shift in the Grover iteration. It is worth pointing out that basis state $|x\rangle$ can be written in either decimal form $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle, \dotsc, |N\rangle\}$ where $N = 2^n$, or binary form $\{|0\rangle, |1\rangle\}^{\otimes n}$. The main text tells that $|x_0\rangle = |0\rangle$ (decimal form), then $$ U = 2|0\rangle\langle 0| - I $$(eqn:6.1.4) One can also write $|x_0\rangle = |0\rangle^{\otimes n}$ so $$ U = 2|0\rangle^{\otimes n}\langle 0|^{\otimes n} - I $$(eqn:6.1.5) which is equivalent with eq. {eq}`eqn:6.1.4`.