# Exercise 5.1 Consider a transformation $F$ defined as $$ F \equiv \sum_{j=0}^{N-1} \left[\sum_{k=0}^{N-1}\frac{1}{\sqrt{N}}\exp\left(2i\pi\frac{jk}{N}\right)|k\rangle\right]\langle j| = \sum_{j=0}^{N-1} |\tilde{j}\rangle\langle j| $$(eqn:5.1.1) where basis $\{|j\rangle\}$ and $\{|k\rangle\}$ are different orthonormal basis set. Above transformation is the quantum Fourier transformation since for any basis vector $|j\rangle$, it equivalently performs $$ |j\rangle \to|\tilde{j}\rangle = \sum_{k=0}^{N-1}\frac{1}{\sqrt{N}}\exp\left(2i\pi\frac{jk}{N}\right)|k\rangle $$(eqn:5.1.2) To prove the transformation in eq. {eq}`eqn:5.1.1` is unitary, we have $$ \begin{align} F^{\dagger}F &=\left[\sum_{j=0}^{N-1} |\tilde{j}\rangle\langle j|\right]^{\dagger}\left[\sum_{n=0}^{N-1} |\tilde{n}\rangle\langle n|\right] \\ &= \left[\sum_{j=0}^{N-1} |j\rangle\langle \tilde{j}|\right]^{\dagger}\left[\sum_{n=0}^{N-1} |\tilde{n}\rangle\langle n|\right] \\ &= \sum_{n,j} |j\rangle\langle \tilde{j}|\tilde{n}\rangle\langle n| \end{align} $$(eqn:5.1.3) where $|j\rangle$ and $|n\rangle$ are different notation for same orthonormal basis. Then the inner product $\langle \tilde{j}|\tilde{n}\rangle$ becomes $$ \begin{align} \langle \tilde{j}|\tilde{n}\rangle &= \left[\sum_{k=0}^{N-1}\frac{1}{\sqrt{N}}\exp\left(-2i\pi\frac{jk}{N}\right)\langle k|\right]\left[\sum_{m=0}^{N-1}\frac{1}{\sqrt{N}}\exp\left(2i\pi\frac{nm}{N}\right)|m\rangle\right] \\ &= \frac{1}{N}\sum_{m,k} \exp\left(-2i\pi\frac{jk}{N}\right)\exp\left(2i\pi\frac{nm}{N}\right)\langle k|m\rangle \\ &= \frac{1}{N}\sum_{k=0}^{N-1} \exp\left(-2i\pi\frac{jk}{N}\right)\exp\left(2i\pi\frac{nk}{N}\right)\\ &= \frac{1}{N}\sum_{k=0}^{N-1} \exp\left[2i\pi\frac{(n-j)k}{N}\right] \end{align} $$(eqn:5.1.4) where $|k\rangle$ and $|m\rangle$​ are different notations for same orthonormal basis. Note that $$ \begin{align} \exp\left[2i\pi\frac{(n-j)(k+1)}{N}\right] &= \exp\left[2i\pi\frac{(n-j)k}{N}+2i\pi\frac{(n-j)}{N}\right] \\ &= \exp\left[2i\pi\frac{(n-j)k}{N}\right]\exp\left[2i\pi\frac{(n-j)}{N}\right] \end{align} $$(eqn:5.1.5) so we can use geometry series to compute the sum in eq. {eq}`eqn:5.1.4`​ with common ratio $r=\exp[2i\pi(n-j)/N]$, then $$ \begin{align} \langle \tilde{j}|\tilde{n}\rangle &= \frac{1}{N}\sum_{k=0}^{N-1} \exp\left[2i\pi\frac{(n-j)k}{N}\right]\\ &= \frac{1}{N} \frac{1-r^{N}}{1-r} \\ &= \frac{1}{N} \frac{1-\exp[2i\pi(n-j)]}{1-\exp[2i\pi(n-j)/N]} \\ \end{align} $$(eqn:5.1.6) Then from above calculation, * for $r = 1$, we have $n = j$ and $\langle \tilde{j}|\tilde{n}\rangle = 1$, * for any $r\neq 1$ we have $n\neq j$ but $n - j$ is a integer. Since $$ \exp[2i\pi(n-j)] = \cos[2\pi(n-j)] + i\sin[2\pi(n-j)] $$(eqn:5.1.7) For any $n - j$ as integer, $\cos[2\pi(n-j)]$ is always $1$ and $\sin[2\pi(n-j)]$ is always $0$, so $\exp[2i\pi(n-j)] = 1$ for $\forall n, j$. Meanwhile, $(n-j)/N \neq$ so $\exp[2i\pi(n-j)/N] \neq 1$ and the denominator will not be $1$. In this case, $\langle \tilde{j}|\tilde{n}\rangle = 0$. In conclusion, we have $\langle \tilde{j}|\tilde{n}\rangle = \delta_{jn}$ so $F^{\dagger}F = \sum_{n,j} \delta_{jn}|j\rangle\langle n|$ which is an identity under the matrix representation of $\{|j\rangle\}$, the basis before transformation. Then we can conclude that the Fourier transformation is unitary. **Question: **Is above result basis dependent?