# Exercise 4.7 The Pauli matrices are given by $$ X = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},Y = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix} $$(eqn:4.7.1) Then we could check $$ XYX = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} 0 & i\\ -i & 0 \end{pmatrix} = -Y $$(eqn:4.7.2) The rotation operator about the $\hat{y}$ axis is given by $$ R_y(\theta) = \cos\frac{\theta}{2}\ I - i\sin\frac{\theta}{2}Y = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} $$(eqn:4.7.3) Then we could check $$ \begin{align} XR_y(\theta)X &= \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} \\ &= \begin{pmatrix} \sin\frac{\theta}{2} & \cos\frac{\theta}{2}\\ \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2}\\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \end{align} $$(eqn:4.7.4) Also, for $R_y(-\theta)$ we have $$ R_y(-\theta) = \begin{pmatrix} \cos\frac{-\theta}{2} & -\sin\frac{-\theta}{2} \\ \sin\frac{-\theta}{2} & \cos\frac{-\theta}{2} \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} $$(eqn:4.7.5) According to eq. {eq}`eqn:4.7.4` and eq. {eq}`eqn:4.7.5`, we have $$ XR_y(\theta)X = R_y(-\theta) $$(eqn:4.7.6) --- A relative simple way to prove $XR_y(\theta)X = R_y(-\theta)$ is to use the relation $XYX=-X$​ directly. That is $$ \begin{align} XR_y(\theta)X &= X\left(\cos\frac{\theta}{2} I-i\sin\frac{\theta}{2} Y\right)\\ &= \cos\frac{\theta}{2} XIX - i\sin\frac{\theta}{2} XYX \\ &= \cos\frac{\theta}{2} I + i\sin\frac{\theta}{2}Y \\ &= \cos\frac{\theta}{2} I - i\sin\left(\frac{-\theta}{2}\right)Y = R_y(-\theta) \end{align} $$(eqn:4.7.7)