# Exercise 4.1 For a arbitrary single qubit state $|\psi\rangle$, its Bloch sphere representation $(\theta, \varphi)$ can be obtained as follow, $$ |\psi\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}e^{i\varphi}|1\rangle $$(eqn:4.1.1) Here are eigenvalues and eigenstates of Pauli matrices. * For $X$, the eigenvalues $\lambda_1=1$ and $\lambda_2=-1$, and their corresponding eigenvectors are $$ |v_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}, |v_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix} $$(eqn:4.1.2) We can obtain the Bloch coordinate of $|v_1\rangle$ and $|v_2\rangle$ via $$ \begin{align} |v_1\rangle &= \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}}|1\rangle \\ &= \cos\frac{\pi/2}{2}|0\rangle + \sin\frac{\pi/2}{2}e^{i\cdot0}|1\rangle \\ |v_2\rangle &= \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}}|1\rangle \\ &= \cos\frac{\pi/2}{2}|0\rangle + \sin\frac{\pi/2}{2}e^{i\pi}|1\rangle \\ \end{align} $$(eqn:4.1.3) So the Bloch coordinate is $(\pi/2, 0)$ for $|v_1\rangle$ and $(\pi/2, \pi)$ for $|v_2\rangle$ * For $Y$​, the eigenvalues $\lambda_1=1$​ and $\lambda_2=-1$​, and their corresponding eigenvectors are $$ |v_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ i \end{pmatrix}, |v_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -i \end{pmatrix} $$(eqn:4.1.4) We can obtain the Bloch coordinate of $|v_1\rangle$ and $|v_2\rangle$ via $$ \begin{align} |v_1\rangle &= \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}}i|1\rangle \\ &= \cos\frac{\pi/2}{2}|0\rangle + \sin\frac{\pi/2}{2}e^{i\cdot \pi/2}|1\rangle \\ |v_2\rangle &= \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}}i|1\rangle \\ &= \cos\frac{\pi/2}{2}|0\rangle + \sin\frac{\pi/2}{2}e^{-i\pi/2}|1\rangle \\ \end{align} $$(eqn:4.1.5) So the Bloch coordinate is $(\pi/2, \pi/2)$ for $|v_1\rangle$ and $(\pi/2, -\pi/2)$ for $|v_2\rangle$ * For $Z$​, the eigenvalues $\lambda_1=1$​ and $\lambda_2=-1$​, and their corresponding eigenvectors are $$ |v_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |v_2\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix} $$(eqn:4.1.6) We can obtain the Bloch coordinate of $|v_1\rangle$ and $|v_2\rangle$ via $$ \begin{align} |v_1\rangle &= |0\rangle = \cos\frac{0}{2}|0\rangle + \sin\frac{0}{2}e^{i\cdot 0}|1\rangle \\ |v_2\rangle &= |1\rangle = \cos\frac{\pi}{2}|0\rangle + \sin\frac{\pi}{2}e^{-i\cdot 0}|1\rangle \\ \end{align} $$(eqn:4.1.7) So the Bloch coordinate is $(0, 0)$ for $|v_1\rangle$ and $(\pi, 0)$ for $|v_2\rangle$.