# Exercise 2.6 Consider an inner product $(\cdot, \cdot)$ and we should have $$ \left(|v\rangle, \sum_{i}\lambda _i |w_i\rangle\right) = \sum_i \lambda_i (|v\rangle, |w\rangle) $$(eqn:2.6.1) Then using $(|v\rangle, |w\rangle) = (|w\rangle, |v\rangle)^*$, we can compute $$ \left(\sum_{i}\lambda _i |w_i\rangle, |v\rangle\right) =\left(|v\rangle, \sum_{i}\lambda _i |w_i\rangle\right)^* =\sum_i \lambda^*_i (|v\rangle, |w\rangle)^* = \sum_i \lambda^*_i (|w\rangle, |v\rangle) $$(eqn:2.6.2) where we use relation $\left(\sum_{i} z_i\right)^* = \sum_i z^*_i$ and $(z_1z_2)^* = z^*_1 z^*_2$. Therefore, we can conclude that any inner product $(\cdot, \cdot)$ is conjugate-linear in the first argument.