# Exercise 2.51 The Hadamard gate is defined as $$ H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} $$(eqn:2.51.1) The Hermitian conjugate of $H$ is given by $$ H^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = H $$(eqn:2.51.2) Thus, we could calculate $$ H^{\dagger}H =HH^{\dagger} = \frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = I $$(eqn:2.51.3) Thus, we could conclude that the Hadamard gate H is unitary.