# Exercise 2.19 The Pauli matrices are given by $$ I= \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},Y = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix},Z = \begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix} $$(eqn:2.19.1) The Hermitian conjugate of Pauli matrices can be directly obtained by $$ I^{\dagger}= \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}, X^{\dagger} = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},Y^{\dagger} = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix},Z^{\dagger} = \begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix} $$(eqn:2.19.2) Compare eq. {eq}`eqn:2.19.1` and eq. {eq}`eqn:2.19.2` we could conclude that $I=I^{\dagger}, X=X^{\dagger}, Y=Y^{\dagger}, Z=Z^{\dagger}$​ and $I, X, Y, Z$ are all Hermitian operators. Meanwhile, we could calculate $$ \begin{align} I^{\dagger}I &= II^{\dagger} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I \\ X^{\dagger}X &= XX^{\dagger} = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I \\ Y^{\dagger}Y &= YY^{\dagger} = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I \\ Z^{\dagger}Z &= ZZ^{\dagger} = \begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix}\begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = I \\ \end{align} $$(eqn:2.19.3) Note that we have $I^{\dagger}I = II^{\dagger}$, $X^{\dagger}X = XX^{\dagger}$, $Y^{\dagger}Y = YY^{\dagger}$ and $Z^{\dagger}Z = ZZ^{\dagger}$ since $I, X, Y, Z$ are Hermitian operators. From eq. {eq}`eqn:2.19.3` we could conclude that, $I, X, Y, Z$ are all unitary matrices.