# Exercise 2.11 The Pauli matrices are given by $$ X = \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix},Y = \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix},Z = \begin{pmatrix} 1 & 0\\ 0 &-1 \end{pmatrix} $$(eqn:2.11.1) The eigenvectors, eigenvalues and diagonal representation of Pauli matrices are shown below. * For $X$​, the eigenvalue $\lambda$ is the solution of the following equation, $$ |X - \lambda I|= \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 1 = 0 \iff \lambda = \pm 1 $$(eqn:2.11.2) The corresponding normalized eigenvectors are given by $$ \begin{align} X|v_1\rangle &= \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff |v_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ X|v_2\rangle &= \begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = -\begin{pmatrix} c \\ d \end{pmatrix} \iff |v_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{align} $$(eqn:2.11.3) The coefficient $1/\sqrt{2}$ is to normalized the eigenvector. Usually, we define $|+\rangle = |v_1\rangle $ and $|-\rangle = |v_2\rangle$. From the eigenvalues and eigenvectors, we could write the diagonal representation for $X$​ as $$ X = |v_1\rangle\langle v_1| - |v_2\rangle\langle v_2| = |+\rangle\langle +| - |-\rangle\langle -| $$(eqn:2.11.4) * For $Y$​, the eigenvalue $\lambda$​ is the solution of the following equation, $$ |Y - \lambda I|= \begin{vmatrix} -\lambda & -i \\ i & -\lambda \end{vmatrix} = \lambda^2 - 1 = 0 \iff \lambda = \pm 1 $$(eqn:2.11.5) The corresponding normalized eigenvectors are given by $$ \begin{align} Y|w_1\rangle &= \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff |w_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ i \end{pmatrix} \\ Y|w_2\rangle &= \begin{pmatrix} 0 & -i\\ i &0 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = -\begin{pmatrix} c \\ d \end{pmatrix} \iff |w_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix} \end{align} $$(eqn:2.11.6) The coefficient $1/\sqrt{2}$ is to normalized the eigenvector. From the eigenvalues and eigenvectors, we could write the diagonal representation for $Y$ as $$ Y = |w_1\rangle\langle w_1| - |w_2\rangle\langle w_2| $$(eqn:2.11.7) * For $Z$​, the eigenvalue $\lambda$​ is the solution of the following equation, $$ |Z - \lambda I|= \begin{vmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{vmatrix} = \lambda^2 - 1 = 0 \iff \lambda = \pm 1 $$(eqn:2.11.8) The corresponding normalized eigenvectors are given by $$ \begin{align} Z|u_1\rangle &= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff |u_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle \\ Z|u_2\rangle &= \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix} = -\begin{pmatrix} c \\ d \end{pmatrix} \iff |u_2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle \end{align} $$(eqn:2.11.9) From the eigenvalues and eigenvectors, we could write the diagonal representation for $Z$​ as $$ Z = |0\rangle\langle 0| - |1\rangle\langle 1| $$(eqn:2.11.10)