# Exercise 10.6 Consider an arbitrary encoded logical qubit $|\psi_L\rangle$ of Shor's code as $$ |\psi_L\rangle = \alpha |0_L\rangle + \beta |1_L\rangle $$(eqn:10.6.1) where $$ \begin{align} |0_L\rangle &= \frac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}}\\ |1_L\rangle &= \frac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \end{align} $$(eqn:10.6.2) Consider a phase flip error on any of first three qubits, since $Z|0\rangle = |0\rangle$ and $Z|1\rangle = -|1\rangle$, we will have noisy $|0_L\rangle$ and $|1_L\rangle$ state as $$ \begin{align} |0_L\rangle &\to \frac{(|000\rangle - |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}}\\ |1_L\rangle &\to \frac{(|000\rangle + |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \end{align} $$(eqn:10.6.3) Then apply $Z_{1}Z_{2}Z_{3}$ to noisy states, we have $$ \begin{align} &\frac{Z_{1}Z_{2}Z_{3}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ &= \frac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}}=|0_L\rangle \\ &\frac{Z_{1}Z_{2}Z_{3}(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}} \\ &= \frac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}}=|1_L\rangle \end{align} $$(eqn:10.6.4) Therefore, applying $Z_{1}Z_{2}Z_{3}$ to noisy state recover noisy $|0_L\rangle$ and $|1_L\rangle$ state from a phase flip error on any of the first three qubits, and it can naturally recover a phase flip error on any of the first three qubits of arbitrary state $|\psi\rangle = \alpha |0_L\rangle + \beta |1_L\rangle$.