Exercise 4.32
Consider a two qubit density matrix \(\rho\), if we perform projective measurement to the second qubit with operator
(1)\[
P_0 = I\otimes |0\rangle\langle 0|, P_1 = I\otimes |1\rangle\langle 1|
\]
The post-measurement state after measuring \(P_0\) is \(P_0\rho P_0/p_0\) where \(p_0\) is the probability of measuring \(0\), and the post-measurement state after measuring \(P_1\) is \(P_1\rho P_1/p_1\) where \(p_1\) is the probability of measuring \(1\). If an observer did not know the measurement result, then we will have probability \(p_0\) to get \(P_0\rho P_0/p_0\), and have probability \(p_1\) to get \(P_1\rho P_1/p_1\). So
(2)\[
\rho' =p_0\cdot \frac{P_0\rho P_0}{p_0} + p_1\cdot \frac{P_1\rho P_1}{p_1} = P_0\rho P_0+P_1\rho P_1
\]
We can calculate the partial trace for the first qubit as
(3)\[
{\rm Tr}_{2}(\rho) = (I\otimes \langle 0|) \rho (I\otimes | 0\rangle ) + (I\otimes \langle 1|) \rho (I\otimes | 1\rangle )
\]
Similarly, the partial trace of \(\rho'\) for the first qubit is
(4)\[ \begin{align}\begin{aligned}\begin{split}
\begin{align}
{\rm Tr}_{2}(\rho') =& (I\otimes \langle 0|) \rho' (I\otimes | 0\rangle ) + (I\otimes \langle 1|) \rho' (I\otimes | 1\rangle ) \\
=& (I\otimes \langle 0|) P_0\rho P_0 (I\otimes | 0\rangle ) +(I\otimes \langle 0|) P_1\rho P_1 (I\otimes | 0\rangle ) \\
&+ (I\otimes \langle 1|) P_0\rho P_0 (I\otimes | 1\rangle ) +(I\otimes \langle 1|) P_1\rho P_1 (I\otimes | 1\rangle )\\
=& (I\otimes \langle 0|) (I\otimes |0\rangle\langle 0|)\rho (I\otimes |0\rangle\langle 0|) (I\otimes | 0\rangle ) \\
&+(I\otimes \langle 0|) (I\otimes |1\rangle\langle 1|)\rho (I\otimes |1\rangle\langle 1|)(I\otimes | 0\rangle ) \\
&+ (I\otimes \langle 1|) (I\otimes |0\rangle\langle 0|)\rho (I\otimes |0\rangle\langle 0|) (I\otimes | 1\rangle ) \\
&+(I\otimes \langle 1|) (I\otimes |1\rangle\langle 1|)\rho (I\otimes |1\rangle\langle 1|)(I\otimes | 1\rangle )\\\end{split}\\\begin{split}=& (I\otimes \langle 0|0\rangle\langle 0|) \rho (I\otimes |0\rangle\langle 0|0\rangle ) \\
&+(I\otimes \langle 0|1\rangle\langle 1|) \rho (I\otimes |1\rangle\langle 1|0\rangle ) \\
&+ (I\otimes \langle 1|0\rangle\langle 0|) \rho (I\otimes |0\rangle\langle 0|1\rangle ) \\
&+(I\otimes \langle 1|1\rangle\langle 1|) \rho (I\otimes |1\rangle\langle 1|1\rangle ) \\
=& (I\otimes \langle 0|) \rho (I\otimes |0\rangle)+(I\otimes \langle 1|) \rho (I\otimes |1\rangle)
\end{align}
\end{split}\end{aligned}\end{align} \]
which is the same as eq. (3). Thus, we have \({\rm Tr}_{2}(\rho)={\rm Tr}_{2}(\rho')\).