Noise-Resilient Quantum Simulation with Quantum Error Detection Code

Assumptions and Notations

We create circuits with extra ancillas to protect $\exp(-i\theta \mathcal{P})$ under [[n, n-2, 2]] code

- Assumptions. We consider gate based Pauli noise but noiseless encoding, decoding and mid-circuit syndrome measurements. We perform analysis on fully connected hardware and assume that the delay due to mid-circuit syndrome measurements will not bring any error during idle time.
- Notation. $\overline{\mathcal{P}}$ for the logical operator and \mathcal{P} for physical operator corresponding to $\overline{\mathcal{P}}$. I, X, Y, Z are single qubit Pauli operators.

Circuits with Exponential Operations

- For fermionic system simulation, convert the Hamiltonian into Pauli form using Jordan-Wigner, Bravyi-Kitaev or parity mapping to achieve $H \xrightarrow{\text{mapping}} \tilde{H}$, where $\tilde{H} = \sum_{j} \alpha_{j} \mathcal{P}_{j}.$
- Use product formula approach to obtain $e^{-i\theta \tilde{H}} \simeq \prod_j e^{-i\theta_j \mathcal{P}_j}$ where $\theta_j = \alpha_j \delta_j$.
- Some parameterized circuits (e.g., QAOA and UCC ansatz) also have similar structure.
- Create circuits in the following form:

$$|\psi_0\rangle - e^{-i\theta_1 \mathcal{P}_1} e^{-i\theta_2 \mathcal{P}_2} \cdots e^{-i\theta_n \mathcal{P}_n}$$

Quantum Error Detection Code and Weakly Fault Tolerance

The stabilizer generators are $X^{\otimes n}$ and $Z^{\otimes n}$. Logical Pauli operators are given by $\overline{X}_i = X_i X_{n-1}, \overline{Z}_i = Z_i Z_n$ and $\overline{Y}_i = i \overline{X}_i \overline{Z}_i$. The logical rotation gates are $\overline{R_{X_i}}(\theta) = \exp\left(-i\frac{\theta}{2}X_iX_{n-1}\right), \overline{R_{Z_i}}(\theta) = \exp\left(-i\frac{\theta}{2}Z_iZ_{n-1}\right)$

Below are examples of logical rotations under the [[4, 2, 2]] code.

Figure 1. Circuit of $\overline{R_{X_1}}(\theta) = \exp(-i\theta X_1 X_3/2)$ (left) and $\overline{R_{Z_1}}(\theta) = \exp(-i\theta Z_1 Z_4/2)$ (right).

They are not fault-tolerant, since a Z_3 error occurring at location a becomes a Z_2Z_4 error, and a X_1 error at location b becomes a X_1X_4 error, both undetectable.

Weakly Fault Tolerant Rotation

Previous research (not yet published) from Todd Brun and Christopher Gerhard purposes a weakly fault-tolerant construction shown in Fig. 2 that helps detect most single- and two-qubits Pauli noise, except for X error at location d and Z error at location f, both of which relate to imprecise rotation angle $\theta + \Delta \theta$.

Figure 2. Circuit of weakly fault tolerant $\overline{R_{X_1}}(\theta)$ (left) and $\overline{R_{Z_1}}(\theta)$ (right)

Dawei Zhong, Todd A. Brun

University of Southern California, Los Angeles, CA

(1)

Approach to Construct Noise-Resilient Operation

Inspired by adding ancilla to create weakly fault-tolerance, we purpose four steps to create noise-resilient exponential map $\exp(-i\theta\overline{\mathcal{P}})$ with [[n, n-2, 2]] code. Noiseresilience is worse than weakly fault-tolerance but better than doing nothing.

Step 1: Construct Physical Operator

A physical operator of $\exp\left(-i\theta\overline{\mathcal{P}}\right)$ can be done by $\exp\left(-i\theta\overline{\mathcal{P}}\right) \to \exp\left(-i\theta\mathcal{P}\right)$, where \mathcal{P} is physical operator of $\overline{\mathcal{P}}$ under [[4, 2, 2]] code.

Step 2: Add ancilla to Physical Operator

Adding ancilla that could **decrease the number of remaining logical error** at the end of circuit but do not change expected operation.

Step 3: Create Equivalent Circuits

Create a group of circuits that equivalently implement $\exp\left(-i\theta\overline{\mathcal{P}}\right)$ with one extra ancilla. Different circuits have different noise-resilient performance.

Step 4: Search for Best Noise-Resilient Circuit

Search for circuits with the least remaining logical error (best noise-resilient performance) after syndrome measurement.

Examples

Logical Rotation-Y

Figure 3. Two noise-resilient circuits that implement $\overline{R_{Y_i}}(\theta) = \exp(-i\theta Y_i X_{n-1} Z_n/2)$ in [[n, n-2, 2]].

Figure 4. Logical error rate (left) and post-selection rate (right) of two noise-resilient circuits under 1,000,000 trials simulation with depolarizing gate noise.

Logical Exponential with Weight n > 3 Pauli

Figure 5. Percentage of remaining logical error versus weights in $\exp(-i\theta Z^{\otimes n})$ using circuit on the right.

Contact Information: daweiz@usc.edu for Dawei Zhong and tbrun@usc.edu for Todd Brun.

With Mid-Circuit Syndrome Measurement

Protocol

Use noise-resilient circuit for $\exp(-i\theta \mathcal{P})$ and measure syndromes after each layer.

Performance Under Error Rate *p* **with** *k* **Logical Qubits**

Figure 6. Performance with different number of $\exp(-i\theta Z^{\otimes n})$ layer (n = k + 2) with $p = 10^{-5}$ (left), 10^{-3} (middle) and 5 \times 10^{-3} (right).

number k = 2 (left), 6 (middle) and 10 (right).

Figure 7. Performance with different number of $\exp(-i\theta Z^{\otimes n})$ layer (n = k + 2) with logical qubits

Comments

• Optimize near term resources by using fewer qubits and $\mathcal{O}(2n)$ CNOTs.

- Reduce overhead by discarding noisy shots and no need for correction compare with QEC. Can be used on near-term small-sacle fermionic system simulation.

Required device with full connectivity to achieve optimal performance (e.g, ion trap system) Required device with perfect qubit reset to achieve best mid-circuit measurement.