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Assumptions and Notations

We create circuits with extra ancillas to protect exp(−iθP) under [[n, n − 2, 2]] code

Assumptions. We consider gate based Pauli noise but noiseless encoding,

decoding and mid-circuit syndrome measurements. We perform analysis on fully

connected hardware and assume that the delay due to mid-circuit syndrome

measurements will not bring any error during idle time.

Notation. P for the logical operator and P for physical operator corresponding to

P . I, X, Y, Z are single qubit Pauli operators.

Circuits with Exponential Operations

For fermionic system simulation, convert the Hamiltonian into Pauli form using

Jordan-Wigner, Bravyi-Kitaev or parity mapping to achieve H
mapping−−−−→ H̃ , where

H̃ =
∑

j αjPj.

Use product formula approach to obtain e−iθH̃ '
∏

j e−iθjPj where θj = αjδj.

Some parameterized circuits (e.g., QAOA and UCC ansatz) also have similar

structure.

Create circuits in the following form:

|ψ0⟩ / e−iθ1P1 e−iθ2P2 · · · e−iθnPn

Quantum Error Detection Code andWeakly Fault Tolerance

The stabilizer generators are X⊗n and Z⊗n. Logical Pauli operators are given by

X i = XiXn−1, Z i = ZiZn and Y i = iX iZ i. The logical rotation gates are

RXi
(θ) = exp

(
−i

θ

2
XiXn−1

)
, RZi

(θ) = exp
(

−i
θ

2
ZiZn−1

)
(1)

Below are examples of logical rotations under the [[4, 2, 2]] code.
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•
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•
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Figure 1. Circuit of RX1(θ) = exp(−iθX1X3/2) (left) and RZ1(θ) = exp(−iθZ1Z4/2) (right).

They are not fault-tolerant, since a Z3 error occurring at location a becomes a Z2Z4
error, and a X1 error at location b becomes a X1X4 error, both undetectable.

Weakly Fault Tolerant Rotation

Previous research (not yet published) from Todd Brun and Christopher Gerhard

purposes a weakly fault-tolerant construction shown in Fig. 2 that helps detect most

single- and two-qubits Pauli noise, except for X error at location d and Z error at
location f , both of which relate to imprecise rotation angle θ + ∆θ.
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Figure 2. Circuit of weakly fault tolerant RX1(θ) (left) and RZ1(θ) (right)

Approach to Construct Noise-Resilient Operation

Inspired by adding ancilla to create weakly fault-tolerance, we purpose four steps

to create noise-resilient exponential map exp(−iθP) with [[n, n − 2, 2]] code. Noise-
resilience is worse than weakly fault-tolerance but better than doing nothing.

Step 1: Construct Physical Operator

A physical operator of exp
(
−iθP

)
can be done by exp

(
−iθP

)
→ exp (−iθP), where

P is physical operator of P under [[4, 2, 2]] code.

Step 2: Add ancilla to Physical Operator

Adding ancilla that could decrease the number of remaining logical error at the end

of circuit but do not change expected operation.

Step 3: Create Equivalent Circuits

Create a group of circuits that equivalently implement exp
(
−iθP

)
with one extra

ancilla. Different circuits have different noise-resilient performance.

Step 4: Search for Best Noise-Resilient Circuit

Search for circuits with the least remaining logical error (best noise-resilient perfor-

mance) after syndrome measurement.

Examples

Logical Rotation-Y
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Figure 3. Two noise-resilient circuits that implement RYi
(θ) = exp (−iθYiXn−1Zn/2) in [[n, n − 2, 2]].
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Figure 4. Logical error rate (left) and post-selection rate (right) of two noise-resilient circuits under

1,000,000 trials simulation with depolarizing gate noise.
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Figure 5. Percentage of remaining logical error versus weights in exp(−iθZ⊗n) using circuit on the
right.

With Mid-Circuit Syndrome Measurement

Protocol

Use noise-resilient circuit for exp(−iθP) and measure syndromes after each layer.

|ψ0⟩ /

e−iθP1

S /

e−iθP2

S · · · /

e−iθPn

S |ψ⟩

|ψa⟩ |ψa⟩ · · · |ψa⟩

|ψs⟩ / • |ψs⟩ / • · · · |ψs⟩ / •

Performance Under Error Rate pwith k Logical Qubits
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Figure 6. Performance with different number of exp(−iθZ⊗n) layer (n = k + 2) with p = 10−5 (left),

10−3 (middle) and 5 × 10−3 (right).
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Figure 7. Performance with different number of exp(−iθZ⊗n) layer (n = k + 2) with logical qubits
number k = 2 (left), 6 (middle) and 10 (right).

Comments

1. Advantages of our approach:
Easy to implement in near-term devices.

Optimize near term resources by using fewer qubits and O(2n) CNOTs.
Reduce overhead by discarding noisy shots and no need for correction compare with QEC.

Can be used on near-term small-sacle fermionic system simulation.

It can be easily extended for any [[n, k, d]] stabilizer code.
2. Disadvantages of using our approach

Required device with full connectivity to achieve optimal performance (e.g, ion trap system)

Required device with perfect qubit reset to achieve best mid-circuit measurement.
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