Assumptions and Notations

We create circuits with extra ancillas to protect exp(—i0P) under |[n,n — 2, 2|] code

= Assumptions. We consider gate based Pauli noise but noiseless encoding,
decoding and mid-circuit syndrome measurements. We perform analysis on fully
connected hardware and assume that the delay due to mid-circuit syndrome
measurements will not bring any error during idle time.

= Notation. P for the logical operator and P for physical operator corresponding to

P. I, XY, 7 are single qubit Pauli operators.

Circuits with Exponential Operations

= For fermionic system simulation, convert the Hamiltonian into Pauli form using

Jordan-Wigner, Bravyi-Kitaev or parity mapping to achieve H mapping, H, where
H = Z - Oéij.

J
= Use product formula approach to obtain e ~ T].e~"*" where 6; = ;4.

= Some parameterized circuits (e.g., QAOA and UCC ansatz) also have similar
structure.

= Create circuits in the following form:
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Quantum Error Detection Code and Weakly Fault Tolerance

The stabilizer generators are X®" and Z*". Logical Pauli operators are given by
X; =X X,1,.Z,=2Z;Z,and Y; =1X,;Z;. The logical rotation gates are
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Below are examples of logical rotations under the [[4, 2, 2|| code.
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Figure 1. Circuit of Ry, (0) = exp(—i0X,X3/2) (left) and Ry, (0) = exp(—i0Z,2Z,/2) (right).

They are not fault-tolerant, since a Zs error occurring at location a becomes a 2,2,
error, and a X, error at location b becomes a X, X, error, both undetectable.

Weakly Fault Tolerant Rotation

Previous research (not yet published) from Todd Brun and Christopher Gerhard
purposes a weakly fault-tolerant construction shown in Fig. 2 that helps detect most
single- and two-qubits Paull noise, except for X error at location d and Z error at
location f, both of which relate to imprecise rotation angle 6 + A6.
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Figure 2. Circuit of weakly fault tolerant Ry, () (left) and R, (#) (right)
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Approach to Construct Noise-Resilient Operation

Inspired by adding ancilla to create weakly fault-tolerance, we purpose four steps
to create noise-resilient exponential map exp(—:0P) with ||[n,n — 2, 2] code. Noise-
resilience is worse than weakly fault-tolerance but better than doing nothing.

Step 1: Construct Physical Operator

A physical operator of exp (—i§P) can be done by exp (—iP) — exp (—ifP), where
P is physical operator of P under [[4, 2, 2]] code.

Step 2: Add ancilla to Physical Operator

Adding ancilla that could decrease the number of remaining logical error at the end
of circuit but do not change expected operation.

Step 3: Create Equivalent Circuits

Create a group of circuits that equivalently implement exp (—i6P) with one extra
ancilla. Different circuits have different noise-resilient performance.

Step 4: Search for Best Noise-Resilient Circuit

Search for circuits with the least remaining logical error (best noise-resilient perfor-
mance) after syndrome measurement.
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Figure 4. Logical error rate (left) and post-selection rate (right) of two noise-resilient circuits under
1,000,000 trials simulation with depolarizing gate noise.
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Figure 5. Percentage of remaining logical error versus weights in exp(—i6Z%") using circuit on the
right.

Contact Information: daweiz@usc.edu for Dawel Zhong and tbrun@usc.edu for Todd Brun.

e USC Noise-Resilient Quantum Simulation with Quantum Error Detection Code

With Mid-Circuit Syndrome Measurement

Protocol

Use noise-resilient circuit for exp(—:6P) and measure syndromes after each layer.
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Figure 6. Performance with different number of exp(—i0Z2%") layer (n = k + 2) with p = 107 (left),

1073 (middle) and 5 x 1077 (right).
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Figure 7. Performance with different number of exp(—i02%") layer (n = k + 2) with logical qubits

number k = 2 (left), 6 (middle) and 10 (right).

Comments

1. Advantages of our approach:
= Easy to implement in near-term devices.

= Optimize near term resources by using fewer qubits and O(2n) CNOTs.
= Reduce overhead by discarding noisy shots and no need for correction compare with QEC.

= Can be used on near-term small-sacle fermionic system simulation.
= |t can be easily extended for any [|n, k, d]| stabilizer code.

2. Disadvantages of using our approach

= Required device with full connectivity to achieve optimal performance (e.g, ion trap system)
= Required device with perfect qubit reset to achieve best mid-circuit measurement.
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