# Noise-Resilient Quantum Simulation with Quantum Error Detection Code

# Background

In this work, we create circuits with extra ancillas to protect the logical exponential operator by a quantum error detecting code.

- Assumptions. We consider Pauli noise after gates and hardware with full connectivity and mid-circuit measurements.
- Notation. We use  $\overline{\mathcal{P}}$  for the logical operator and  $\mathcal{P}$  to represent the physical operator corresponding to  $\overline{\mathcal{P}}$ . I, X, Y, Z are single qubit Pauli operators.

#### **Product Formula Simulation**

For fermionic system simulation, convert the Hamiltonian into Pauli form using Jordan-Wigner, Bravyi-Kitaev or parity mapping

 $H \xrightarrow{\text{mapping}} \tilde{H}$ , where  $\tilde{H} = \sum \alpha_j \mathcal{P}_j$ 

Use product formula approach (Trotter-Suzuki decomposition) to decompose

$$e^{-i\theta \tilde{H}} \simeq \prod_{i} e^{-i\theta_j \mathcal{P}_j}$$
, where  $\theta_j = \alpha_j \theta$ 

Create circuits in the following form:

$$\psi_0\rangle - e^{-i\theta_1 \mathcal{P}_1} e^{-i\theta_2 \mathcal{P}_2} \cdots e^{-i\theta_n \mathcal{P}_n}$$

#### **Quantum Error Detection Code**

The stabilizer generators are  $X^{\otimes n}$  and  $Z^{\otimes n}$ . Logical Pauli operators are given by  $\overline{X}_i = X_i X_{n-1}, \overline{Z}_i = Z_i Z_n$  and  $\overline{Y}_i = i \overline{X}_i \overline{Z}_i$ . The logical rotation gates are

$$\overline{R_{X_i}}(\theta) = \exp\left(-i\frac{\theta}{2}X_iX_{n-1}\right), \overline{R_{Z_i}}(\theta) = \exp\left(-i\frac{\theta}{2}Z_iZ_i\right)$$

Below are examples of logical rotations under the [[4, 2, 2]] code.



Figure 1. Circuit of  $\overline{R_{X_1}}(\theta) = \exp(-i\theta X_1 X_3/2)$  (left) and  $\overline{R_{Z_1}}(\theta) = \exp(-i\theta Z_1 Z_4/2)$  (right).

They are not fault-tolerant, since a  $Z_3$  error occurring at location a becomes a  $Z_2Z_4$ error, and a  $X_1$  error at location b becomes a  $X_1X_4$  error, both undetectable.

#### Weakly Fault Tolerant Rotation

Previous research (not yet published) from Todd Brun and Christopher Gerhard purposes a weakly fault-tolerant construction shown in Fig. 2 that helps detect most single- and two-qubit Pauli noise, except for X error at location d and Z error at location f.



Figure 2. Circuit of weakly fault tolerant  $\overline{R_{X_1}}(\theta)$  (left) and  $\overline{R_{Z_1}}(\theta)$  (right)

Dawei Zhong, Todd A. Brun

University of Southern California, Los Angeles, CA

# Approach





n-1

(3)



Four steps to protect each exponential map  $\exp(-i\theta\overline{\mathcal{P}})$  with [[n, n-2, 2]] code.

#### **Step 1: Construct Physical Operator**

Construct physical operator by  $\exp(-i\theta\overline{\mathcal{P}}) \to \exp(-i\theta\mathcal{P})$ , which fulfill two requirements.

- The given circuit should perform logical operation  $\overline{U}$  on logical state  $|\overline{\psi}\rangle$
- The given circuit should always convert any valid logical state (i.e., a state that falls into the codespace) into another valid logical state in same subspace.

### **Step 2: Create Equivalent Circuits**

Create a group of circuits that equivalently implement  $\exp(-i\theta \mathcal{P})$  with one (or more) ancilla. Use the following construction to create equivalent circuits:



Here the i-th qubit can be any qubits between qubit 1 and qubit n. The new map Uis still an exponential map  $\exp(-i\theta \mathcal{P}')$ , and we can set every possible qubit as ancilla.

#### **Step 3: Search for Noise-Resilient circit**

The most-noise resilient circit is the one with the least logical error ratio (num\_logical\_error/num\_total\_err) under all possible depolarizing Pauli noise after each gate. Use numerical simulation to find the noise-resilient circit.

#### **Step 4: Perform Mid-circuit syndrome Measurement**

Use noise-resilient operator construction for  $\exp(-i\theta \mathcal{P})$ . After measuring error syndrome after each  $\exp(-i\theta \mathcal{P})$ , we discard the noisy shots and use the remaining shots for further analysis.



Figure 3. Mid-Circuit Measurement Protocol.

### Comments

- Advantages of our approach:
  - Easy to implement in near-term devices.
- Optimize near term resources by using fewer qubits and  $\mathcal{O}(2n)$  CNOTs.
- Reduce overhead by discarding noisy shots and no need for correction compare with QEC.
- Can be used on near-term small-sacle fermionic system simulation. • It can be easily extended for any [[n, k, d]] stabilizer code.
- Disadvantages of using our approach
- Required device with full connectivity to achieve optimal performance (e.g, ion trap system)
- Required device with perfect qubit reset to achieve best mid-circuit measurement.

## Logical Rotation-Y





1,000,000 trials simulation with depolarizing gate noise.

# Logical Exponential with Weight n > 3 Pauli

Consider noise-resilient circuits for  $\exp(-i\theta Z^{\otimes n})$  with different weights n.



# **Performance in Deep Circuit**



Figure 7. Detection rate, logical error rate and no error rate with different number of  $\exp(-i\theta Z^{\otimes n})$ layers and qubit n under error probability  $10^{-4}$ .



Figure 8. Detection rate, logical error rate and no error rate with different number of  $\exp(-i\theta Z^{\otimes 6})$ layers and error probability.

### **Examples and Performance**

Figure 4. Two noise-resilient circuit that implements  $\overline{R_{Y_i}}(\theta) = \exp\left(-i\theta Y_i X_{n-1} Z_n/2\right)$ .



Figure 6. Logical error rate versus weights in  $\exp(-i\theta Z^{\otimes n})$  using circuit on the right.

