Noise-Resilient Quantum Simulation with Quantum Error Detection Code

Dawei Zhong, Todd A. Brun

University of Southern California, Los Angeles, CA

In this work, we create circuits with extra ancillas to protect the logical exponential operator by a quantum error detecting code.

- **Assumptions.** We consider Pauli noise after gates and hardware with full connectivity and mid-circuit measurements.
- Notation. We use \overline{P} for the logical operator and P to represent the physical operator corresponding to \overline{P} . *I*, *X*, *Y*, *Z* are single qubit Pauli operators.

Background

■ For fermionic system simulation, convert the Hamiltonian into Pauli form using Jordan-Wigner, Bravyi-Kitaev or parity mapping

Product Formula Simulation

$$
H \xrightarrow{\text{mapping}} \tilde{H}, \text{ where } \tilde{H} = \sum_j \alpha_j \mathcal{P}_j
$$

$$
(1)
$$

Use product formula approach (Trotter-Suzuki decomposition) to decompose

$$
e^{-i\theta \tilde{H}} \simeq \prod_{j} e^{-i\theta_{j} \mathcal{P}_{j}}, \text{ where } \theta_{j} = \alpha_{j} \theta
$$
 (2)

Create circuits in the following form:

$$
|\psi_0\rangle
$$
 \rightarrow $e^{-i\theta_1 \mathcal{P}_1}$ $e^{-i\theta_2 \mathcal{P}_2}$ \cdots $e^{-i\theta_n \mathcal{P}_n}$

 \setminus

Quantum Error Detection Code

The stabilizer generators are $X^{\otimes n}$ and $Z^{\otimes n}.$ Logical Pauli operators are given by $\overline{X}_i = X_i X_{n-1}, \, \overline{Z}_i = Z_i Z_n$ and $\overline{Y}_i = i \overline{X}_i \overline{Z}_i.$ The logical rotation gates are

Construct physical operator by $\exp(-i\theta \overline{P}) \to \exp(-i\theta \mathcal{P})$, which fulfill two requirements.

$$
\overline{R_{X_i}}(\theta) = \exp\left(-i\frac{\theta}{2}X_iX_{n-1}\right), \overline{R_{Z_i}}(\theta) = \exp\left(-i\frac{\theta}{2}Z_iZ_{n-1}\right)
$$

(3)

- \blacksquare The given circuit should perform logical operation \overline{U} on logical state $|\overline{\psi}\rangle$
- The given circuit should always convert any valid logical state (i.e., a state that falls into the codespace) into another valid logical state in same subspace.

Below are examples of logical rotations under the [[4*,* 2*,* 2]] code.

Figure 1. Circuit of $\overline{R_{X_1}}(\theta) = \exp(-i\theta X_1 X_3/2)$ (left) and $\overline{R_{Z_1}}(\theta) = \exp(-i\theta Z_1 Z_4/2)$ (right).

They are not fault-tolerant, since a Z_3 error occurring at location a becomes a Z_2Z_4 error, and a X_1 error at location *b* becomes a X_1X_4 error, both undetectable.

Four steps to protect each exponential map $\exp(-i\theta \overline{P})$ with $[[n, n-2, 2]]$ code.

Here the *i*−th qubit can be any qubits between qubit 1 and qubit *n*. The new map *U* is still an exponential map $\exp(-i\theta \mathcal{P}')$, and we can set every possible qubit as ancilla.

Weakly Fault Tolerant Rotation

Previous research (not yet published) from Todd Brun and Christopher Gerhard purposes a weakly fault-tolerant construction shown in Fig. 2 that helps detect most single- and two-qubit Pauli noise, except for *X* error at location *d* and *Z* error at location *f*.

Figure 2. Circuit of weakly fault tolerant $\overline{R_{X_1}}(\theta)$ (left) and $\overline{R_{Z_1}}(\theta)$ (right)

Approach

Step 1: Construct Physical Operator

Step 2: Create Equivalent Circuits

Create a group of circuits that equivalently implement exp (−*iθ*P) with one (or more) ancilla. Use the following construction to create equivalent circuits:

Figure 7. Detection rate, logical error rate and no error rate with different number of $\exp(-i\theta Z^{\otimes n})$ layers and qubit n under error probability 10^{-4} .

Step 3: Search for Noise-Resilient circit

The most-noise resilient circit is the one with the least logical error ratio (num_logical_error/num_total_err) under all possible depolarizing Pauli noise after each gate. Use numerical simulation to find the noise-resilient circit.

> Figure 8. Detection rate, logical error rate and no error rate with different number of exp(-iθZ^{⊗6}) layers and error probability.

Step 4: Perform Mid-circuit syndrome Measurement

Use noise-resilient operator construction for exp(−*iθ*P). After measuring error syndrome after each exp(−*iθ*P), we discard the noisy shots and use the remaining shots for further analysis.

Figure 3. Mid-Circuit Measurement Protocol.

Comments

- Advantages of our approach:
	- Easy to implement in near-term devices.
- Optimize near term resources by using fewer qubits and $\mathcal{O}(2n)$ CNOTs.
- Reduce overhead by discarding noisy shots and no need for correction compare with QEC.
- Can be used on near-term small-sacle fermionic system simulation. It can be easily extended for any $[[n, k, d]]$ stabilizer code.
- Disadvantages of using our approach Required device with full connectivity to achieve optimal performance (e.g, ion trap system)
- Required device with perfect qubit reset to achieve best mid-circuit measurement.

Examples and Performance

Figure 4. Two noise-resilient circuit that implements $R_{Y_i}(\theta) = \exp(-i\theta Y_i X_{n-1} Z_n/2)$.

Figure 6. Logical error rate versus weights in $\exp(-i\theta Z^{\otimes n})$ using circuit on the right.

Logical Rotation-*Y*

Figure 5. Logical error rate (left) and post-selection rate (right) of two noise-resilient circuits under 1,000,000 trials simulation with depolarizing gate noise.

Logical Exponential with Weight *n >* 3 **Pauli**

Consider noise-resilient circuits for exp(−*iθZ* ⊗*n*) with different weights *n*.

Performance in Deep Circuit

