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Background

In this work, we create circuits with extra ancillas to protect the logical exponential

operator by a quantum error detecting code.

Assumptions. We consider Pauli noise after gates and hardware with full

connectivity and mid-circuit measurements.

Notation. We use P for the logical operator and P to represent the physical
operator corresponding to P . I,X, Y, Z are single qubit Pauli operators.

Product Formula Simulation

For fermionic system simulation, convert the Hamiltonian into Pauli form using

Jordan-Wigner, Bravyi-Kitaev or parity mapping

H
mapping−−−−→ H̃, where H̃ =

∑
j

αjPj (1)

Use product formula approach (Trotter-Suzuki decomposition) to decompose

e−iθH̃ '
∏
j

e−iθjPj, where θj = αjθ (2)

Create circuits in the following form:

|ψ0⟩ / e−iθ1P1 e−iθ2P2 · · · e−iθnPn

Quantum Error Detection Code

The stabilizer generators are X⊗n and Z⊗n. Logical Pauli operators are given by

X i = XiXn−1, Z i = ZiZn and Y i = iX iZ i. The logical rotation gates are

RXi
(θ) = exp

(
−iθ

2
XiXn−1

)
, RZi(θ) = exp

(
−iθ

2
ZiZn−1

)
(3)

Below are examples of logical rotations under the [[4, 2, 2]] code.
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Figure 1. Circuit of RX1(θ) = exp(−iθX1X3/2) (left) and RZ1(θ) = exp(−iθZ1Z4/2) (right).

They are not fault-tolerant, since a Z3 error occurring at location a becomes a Z2Z4
error, and a X1 error at location b becomes a X1X4 error, both undetectable.

Weakly Fault Tolerant Rotation

Previous research (not yet published) from Todd Brun and Christopher Gerhard

purposes a weakly fault-tolerant construction shown in Fig. 2 that helps detect most

single- and two-qubit Pauli noise, except for X error at location d and Z error at
location f .
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Figure 2. Circuit of weakly fault tolerant RX1(θ) (left) and RZ1(θ) (right)

Approach

Four steps to protect each exponential map exp(−iθP) with [[n, n− 2, 2]] code.

Step 1: Construct Physical Operator

Construct physical operator by exp
(
−iθP

)
→ exp (−iθP), which fulfill two require-

ments.

The given circuit should perform logical operation U on logical state |ψ〉
The given circuit should always convert any valid logical state (i.e., a state that falls

into the codespace) into another valid logical state in same subspace.

Step 2: Create Equivalent Circuits

Create a group of circuits that equivalently implement exp (−iθP) with one (or more)
ancilla. Use the following construction to create equivalent circuits:

a • •
1

exp(−iθP)

...
...

i
...

...
n

(a)

1

exp(−iθP)

...
...

i • •
...

...
n

a

(b)

Here the i−th qubit can be any qubits between qubit 1 and qubit n. The new map U
is still an exponential map exp(−iθP ′), and we can set every possible qubit as ancilla.

Step 3: Search for Noise-Resilient circit

The most-noise resilient circit is the one with the least logical error ratio

(num_logical_error/num_total_err) under all possible depolarizing Pauli noise
after each gate. Use numerical simulation to find the noise-resilient circit.

Step 4: Perform Mid-circuit syndrome Measurement

Use noise-resilient operator construction for exp(−iθP). After measuring error syn-
drome after each exp(−iθP), we discard the noisy shots and use the remaining shots
for further analysis.

|ψ0⟩ /

e−iθP1

S /

e−iθP2

S · · · /

e−iθPn

S |ψ⟩

|ψa⟩ |ψa⟩ · · · |ψa⟩

|ψs⟩ / • |ψs⟩ / • · · · |ψs⟩ / •

Figure 3. Mid-Circuit Measurement Protocol.

Comments

1. Advantages of our approach:
Easy to implement in near-term devices.

Optimize near term resources by using fewer qubits and O(2n) CNOTs.
Reduce overhead by discarding noisy shots and no need for correction compare with QEC.

Can be used on near-term small-sacle fermionic system simulation.

It can be easily extended for any [[n, k, d]] stabilizer code.
2. Disadvantages of using our approach

Required device with full connectivity to achieve optimal performance (e.g, ion trap system)

Required device with perfect qubit reset to achieve best mid-circuit measurement.

Examples and Performance

Logical Rotation-Y
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Figure 4. Two noise-resilient circuit that implements RYi(θ) = exp (−iθYiXn−1Zn/2).
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Figure 5. Logical error rate (left) and post-selection rate (right) of two noise-resilient circuits under

1,000,000 trials simulation with depolarizing gate noise.

Logical Exponential with Weight n > 3 Pauli

Consider noise-resilient circuits for exp(−iθZ⊗n) with different weights n.
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Figure 6. Logical error rate versus weights in exp(−iθZ⊗n) using circuit on the right.

Performance in Deep Circuit
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Figure 7. Detection rate, logical error rate and no error rate with different number of exp(−iθZ⊗n)
layers and qubit n under error probability 10−4.
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Figure 8. Detection rate, logical error rate and no error rate with different number of exp(−iθZ⊗6)
layers and error probability.
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